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An invariant measure S is introduced to quantify the disorder in extended
locally striped patterns. It is invariant under Euclidean motions of the pattern,
and vanishes for a uniform array of stripes. Irregularities such as point defects
and domain walls make nonzero contributions to the measure. The evolution of
random initial states to labyrinthine patterns is analyzed through the time
evolution of <5. This behavior is configuration independent, and exhibits two
phases each with a logarithmic decay in 3.
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symmetries; Gray-Scott model.

1. INTRODUCTION

Nature abounds with spatio-temporal patterns ranging from cloud forma-
tion and patterns in sand dunes, to animal coats, fish scales and beehives.(1)

The patterns are regular on a small scale (typically consisting of stripes or
hexagons) but form highly complex structures on a large scale. The non-
linearity of the underlying systems implies that the details of patterns
depend sensitively on the initial conditions. The two patterns shown in
Fig. 1 are obtained by evolving two distinct sets of random initial states
through the Gray-Scott equations(2) used to model a simple reaction-diffu-
sion system. The patterns are clearly different in detail, but appear to share
similar characteristics, such as domain size and defect densities.

The first aim of a theoretical analysis of labyrinthine patterns should
be the identification of suitable characterizations; in particular patterns
generated under identical control parameters (and visually similar) should
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Fig. 1. Two patterns generated by evolving random initial states via the Gray-Scott model
for 32,000 time units. Although the patterns are different in detail, it is easy to discern com-
mon characteristics between them.

be assigned the same set of measures. The characterizations should also be
capable of contrasting visually different patterns. Such an identification
would be analogous to the determination of "ensemble independent"
variables (e.g., pressure, entropy) in statistical mechanics, or the deduction
of dynamical invariants (e.g., fractal dimension, Lyapunov exponent) in
chaotic systems.(3)

Most characterizations introduced for this purpose, thus far, were
"borrowed" either from Statistical Mechanics or Dynamical Systems
Theory. They include Correlation Length,(4, 5) Spectral Entropy,(6) spheri-
cally averaged Structure Factor,(7) and Lyapunov Dimension Density.(8)

None of the measures make explicit use of the local (striped) nature of the
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patterns; consequently, their estimation requires the analysis of large data
sets. The methods are also not strictly applicable in the presence of the con-
tinuous rotational symmetry. For example, these methods fail to provide a
reasonable characterization of target patterns.

In this paper we introduce a characterization, referred to as the dis-
order parameter <5,(9) of labyrinthine patterns that is evaluated from an
underlying scalar field U(x). The observed organization of patterns can be
quantified using the dynamics of S. Even though multiple runs of the
(numerical) experiments give patterns that are very different in detail, S cap-
tures configuration independent features of the relaxation of the patterns
their apparent equilibrium.

In Section 2 we introduce the envelope function of a striped patter
and discuss the advantages of using it to describe a labyrinthine pattern. It
is impossible to compare distinct configurations generated under fixed
external conditions (such as those of Fig. 1) due to the absence of an
analytical form for the fields. We instead require that the characterizations
be equivariant(10) under all rigid motions of a given pattern. In Section 2,
we use a representations of the group actions to determine the form of a
local measure suitable to quantify deviations of the patterns from perfect
stripes. The analysis leads to the definition of the disorder parameter 8.

In Section 3 we present calculations of S for several patterns with
known analytical forms. These results are used to check the accuracy of the
numerical methods introduced in Section 4, and to point out several
desirable features of 3. The evolution of patterns from the Gray-Scott
model(2) is presented in Section 5, and it is shown that 6 captures certain
configuration independent (but parameter dependent) aspects of the relax
tion of initially random states to their final configurations. In the con-
cluding section we discuss how the analysis can be extended to study
experimental patterns.

where the complex field A(x) is the envelope function.(11) The magnitude of
k is k0 = 2TC/A, X being the characteristic wavelength of the pattern. The
addition of the complex conjugate c.c. allows the field U(x) to be real. Since
the basic state e'v* is factored out of U(x), the envelope function varies on
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2. THE DISORDER PARAMETER

Since the patterns under consideration are locally striped, it is
desirable to expand the field U(x) as



A suitable measure 8 of the disorder of patterns should satisfy the
following criteria:

1. 8 must record local deviations of the pattern from stripes (with a
given wave vector k0). Any such deviation should increase 8. The variations
in the envelope function A(x, t) in terms of an operator Q (to be defined)
captures these variations.

2. Analytical representations of a labyrinthine pattern are not
available; hence the evaluation of 8 needs to be done by estimating
derivatives of the field A(\) using values given on a grid. Thus 8 should not
include higher-order derivatives. (For a few simples types of patterns we
are able to evaluate 8 analytically. They will be used to calibrate the errors
in the numerical algorithms.)

3. Every deviation of the pattern from a perfect set of stripes should
increase our measurement. We want our measure to notice domain walls,
dislocations, or an instabilities such as variations of wavelength or cur-
vature of contour lines.

4. For complex labyrinthine patterns, 8 should be extensive. A corre-
sponding intensive variable 8 = 8/Area can be used to compare the disorder
in distinct classes of patterns.

5. 8 needs to be invariant under Euclidean transformations. Since
rotating, relocating, and flipping the pattern do not change the pattern
itself, any sensible measurement of disorder should not change under these
transformations either.
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2.1. Requirements

a scale large compared with L Consequently the expansion (1) can also be
used to reduce the experimental noise, through suitable local averaging.

The characterizations that we introduce are required to quantify the
deviations of a pattern from a perfect array of stripes; i.e., an array of
stripes with a fixed width pointing in a fixed direction everywhere. We state
the minimum requirements for such measures.

2.2. Group Structure

The Euclidean group in two dimensions contains translations, reflec-
tions, and rotations This group is written as 0(2) + <R2 where 0(2) is the
group of rotations and reflections in two dimensions and W2 is an ordered
pair of real numbers representing the translational group in two dimen-
sions. Given the functional form of a pattern, we can deduce that of a
second pattern related by a rigid motion.



By enforcing equivariance under Euclidean motion on the patterns, we can
determine the relationship between the envelopes.

(a) Translation. For a translation, yT: x -»x' = x + x,. The pattern
U'(\') is written using Eq. (1) as
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Since analytical forms of the fields representing our patterns are not
available, it is a priori impossible to determine the form of S that will
capture the common features of distinct configurations generated under
identical conditions. We instead require that d be invariant under all rigid
motions of a single structure. As shown below these invariances provide
possible terms of the measure 3.

Suppose a pattern U(x) undergoes a rigid action y. The value of the
new field U'(x') at x' is the same as that of U(x) at x = y~V.

Using the equivariance (Eq. (2)),

Thus, translating a pattern introduces a constant phase shift in the
envelope.

(b) Reflection. Reflections flip the pattern about an axis in the
plane of the pattern. The group action is yKeK: yK(x, y)-+ (— x', y').
Using VX1=VK,

Choos ing k in the x-direction k x ' = — k x , the envelope terms in th
reflected coord ina te system is writ ten as

the effect of the reflection is
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(c) Rotation. Rotating a pattern consists of the application of a
two dimensional action yR e R, where

The equivariance gives

Rotation thereby modifies the envelope by a position-dependent phase.

Matching terms in Eqs. (1) and (5), A(x) eikx = A'(x') eik'\ Thus

2.3. Derivation of 5

In this section, we derive the structure of an operator Q such that QA
is equivariant under all rigid motions of a labyrinthine pattern. We will
write O = O(a, dx, dy), where a denotes the derivative-independent parts
of Q. Since stripes have a constant envelope and the disorder parameter for
stripes is zero by definition, then

Since a0 # 0 in general, a must be zero, and the operator Q can be written
as Q = Q(dx, dy), (or ©' = Q'(dx, dy) in a second coordinate system). Next,
we deduce the implications on the form of Q imposed by the equivariance
of QA under rigid motions.

1. Invariance under Translation. Under translations

in accordance with Eq. (3).

An invariant measure is obtained by considering |©^(x)|. Since A -> A
under a reflection (about the y-axis) this choice leaves the disorder equiv-
ariant under reflections.



2.4. Form of Higher Order Operators
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2. Invariance under Rotation. Equivariance under rotation of
the field A(x)

We use the requirements that perfect stripes have no disorder to determine
one form for the circle operator, Q. The left-hand side of Eq. (7) must be
zero for perfect stripes because the envelope function is a constant,
(A(x) = a0). Equation (7) then reduces to

The actions of the derivatives on the exponential gives

Since ei(k k ) " is not equal to zero, its prefactor must vanish. The lowest-
order independent factor involving sines and cosines which equals zero
identically is cos2 0 +sin2 0— 1, so this term should be a factor of
Q(ik( 1 — cos 9), ik sin 6) It is easily seen that this factor corresponds to the
operator

The "local" deviations of the pattern from perfect stripes \QA\ can be
integrated to give the disorder parameter, S for a pattern.

The disorder has been normalized so that the intensive variable S is scale
invariant.

The form of O was deduced by imposing the equivariance of QA
under all rigid motions. It was the lowest order (in derivatives) that
satisfies this property. In this section, we show that any operator O(dx, dy)
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such that • A is equivariant is a polynomial of Q. As before, the equiv-
ariance of • A implies that

The argument of the last subsection (with A = const. = a0) implies that Q
is a factor of D. Write • = O(a t + Ax) where a, is a constant, and Al con-
tains the terms with derivatives dx and dy. To determine the form of z),,
substitute A(x) = x. Equation (11) gives

Using D = O ( a , + z)1), • ' = O'(ai + A\) and using O'(xe / ( k - k ' )") =
(Qx) e ' ' ( k - k ' )", it is seen that a, =a', and

thus Q'\A\ (i.e., ©' is a factor of A'), and similarly Q\A{. Thus

This process can be continued. We complete the result inductively.
Suppose

where An contains terms with derivatives dx and dy. Substituting A(x) = x"
gives

Using Eq. (7) n times on the right hand side for Q yields

Hence Q\An, and the result stated at the beginning of this subsection is
proven.



We evaluate the disorder parameter S for several patterns whose
analytical form is known These results will be used to confirm the validity
of the numerical methods presented in the next section and to estimate
their errors.

A steady, circularly symmetric, target pattern is particularly useful for
analysis because it is a non-trivial pattern whose disorder parameter can be
calculated exactly. The equation for a target pattern is
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3. CALIBRATING THE DISORDER PARAMETER

3.1. Stripes

The disorder parameter for a striped array of fixed width is S = 0. This
condition holds for any orientation. We test our programs with data sets
of stripes oriented at different angles from 0° to 180°, by angular differences
of 10°.

Using stripes, we can also demonstrate the sensitivity of S towards the
correct value of k0. Using an incorrect value, k, can increase the value of S.
To show this, we expand a perfect set of stripes with characteristic
wavelength k0 along a lattice base on a wave vector with a different
magnitude k. Then we take the circle operator in the new basis. If the pat-
tern is given by e'k«x, then the misaligned envelope is e''*""*'*, and the
operation gives

Hence d = \k2 — k\\. Thus, in estimating S, we should take care to use the
best possible value of k0.

3.2. Target Pattern
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Expanding as before gives

Therefore A'{x') = aoe
ik'(r~x). Thus,

For the target pattern, the value of 3 depends on the shape of the domain.
If we integrate over a circular domain of radius R, the disorder parameter is

However, typical data sets occupy a square domain, not a circular one.
Therefore, the limits of integration are different.

Substituting x = y sinh t into the integration over the .v-coordinate reduces
the integral to

Another substitution, using t = y/L, yields an integral that can be found
numerically. The resulting disorder parameter for a target pattern in a
square domain is of side L is



Domain walls are boundaries between one striped region and another.
They can be described by the angle at which the stripes intersect and the
width over which the transition from one orientation to the next occurs. If
0 = 0, then the stripes are parallel and the domain wall is trivial. Therefore,
for 9 = 0, we should have 3 = 0.

In Fig. 2, stripes are oriented at 0 = d0 in the top half of the picture
and switch to 0= —90 in the bottom half. The angle changes across the
boundary roughly by the equation 9 = 90 tanh((>> — yo)/w), where y0 is th
middle of the domain wall, and w adjusts its severity. The wave vector is
written as k = k cos 9i + k sin Oj = k cos 9(t + tan 9j). If we maintain a con
stant value of kx, then k cos 9 = k0 cos 90 at all points. Thus the formula
for the wave vector is

This is a very complicated expression which causes many complications
when it appears in the exponential term e'k ". The operator Q adds to
the confusion. We can however check the disorder parameter at small
angles using the small angle approximation. First we can set y0 = 0. Then

Fig. 2. A domain wall between two regions of stripes with different orientations. The disor-
der parameter d is a monotonically increasing function of the angle between the stripes.
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3.3. Domain walls



The Fast Fourier Transform can be used to determine the disorder
parameter. Fourier analysis has the advantage of speed and precision when
performing the derivatives required to evaluate QA.

Once we transform the pattern to Fourier space, an azimuthal averag-
ing determines its average spatial frequency. Since we apply Q on the
envelope of the pattern ^4(x) rather than on the pattern u{x) itself, we need
to extract the transform J(k) of the complex envelope from the transform
w(k) of the pattern. First, we create the spectrum for the corresponding
complex pattern by deleting the half of the spectrum which lies to the — kx

side of the origin and doubling the points which lie on the positive side. We
choose these points because of an initial choice of vector which lies along
the x-axis. Values lying on the ky-axis are real-valued and are left alone.
This procedure leaves us with only the complex pattern.

Once we have the complex pattern, we create the complex envelope by
shifting the spectrum in the kx direction by the average frequency of the
pattern, since the relation in complex space f(x) = ^(x) e'k°x transforms to
/(k) =d(k —k0). Once we obtain the transform of the complex envelope
function, we are ready to perform the derivatives required to get QA.
A spatial derivative dA/dx transforms to a scalar multiplication, ikxA(k),

4. NUMERICAL EVALUATION OF 6 FOR LABYRINTHINE
PATTERNS

where (/> = k0(cos 60 — I) x + k060 cos 90{y2/w — y3/w2)    . The disorder para
eter can be computed by integrating over the entire domain numerically. As
expected, 3g=o = 0 and 3 increases as the angle between the two striped
domains increase. This alone is information that cannot be obtained by
other methods such as the correlation length and spectral entropy.

for small angles tanh x s x — x2, and tan 6 s 9. The wave vector simplifie
to

When this linearization is used in the exponential term,
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in Fourier space. The whole circle operation therefore becomes a process of
multiplying the intensity peaks at each frequency by the appropriate scalar
and correctly summing the results.

5. AN APPLICATION: RELAXATION OF PATTERNS

In this section, we present results from the integration of the Gray-Scott
Model, which demonstrate configuration-independent features of the relaxa-
tion of patterns.

5.1. Gray-Scott Model

The Gray-Scott model is the following pair of reaction-diffusion equa-
tions.(2)

They are based on a more complex set of chemical reactions derived from
biological systems. Three rates determine the total reaction rates of chemi-
cals A and B: the individual chemical reaction rates, the diffusion rates, and
the rates at which these chemicals are fed into the system. With suitable
normalizations, the evolution of a = \_A~\ and b = [5] can be modeled b

D1 and D2 are the diffusion rates of A and B respectively, F is a dimen-
sionless feed rate and k is the dimensionless rate constant for the second
reaction. We follow the experimental setup outlined by Pearson(17) and
choose Z), =2x 10"5, and D2= 10~5.

The stationary solutions to these equations are the trivial state,
(a, b) = (l, 0) and the solutions



Pearson initializes his entire domain to the trivial state (a = \,b = 0)
except for a small region at the center where he sets initial values to
(a, b) = (5, \) +noise. Patterns form at the moving boundary between the
trivial state and the seeded region, and the noise breaks the square sym-
metry of the pattern. Although this method works successfully at all rele-
vant parameter values, patterns formed by this method do not cover the
entire region until approximately 10,000 time steps, at which time the
patterns become static. We are interested in characterizing the evolution of
a pattern which appears all at once over the entire domain. Since we can-
not calculate a definite value of the frequency until the pattern extends
throughout the region, we need to seed the entire region.

In order to form patterns globally and quickly, we need to seed the
entire data set, not just a small region. Unfortunately, seeding the entire
domain requires caution. In the region of parameter space where no real
solutions exist, a domain seeded with random numbers quickly decays to
the trivial state. In order to produce non-trivial patterns in this region, we
must correlate the initial values of each pixel with its neighbor. We do this
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where A = F2 — 4F{F+k)2. In order for these solutions to be real numbers,
the discriminant must be positive {F2 — 4F{F + k)2 ^ 0). Solving for the
equality determines the boundary between regions of real and complex
solutions, which is

The solution to Eq. (12) is the solid curve in Fig. 4. The region
between the curves supports two real solutions to the Gray-Scott equa-
tions. Outside of this region there are no real solutions. Along this curve,
the only nontrivial solution is (a, b) = (0.25, y/F).

Linear stability analysis determines the conditions at which patterns will
appear. Representing a small perturbation around the stable point with (a, b)
— (a + da, b + 8b), and assuming Sa = de\p{is-r + cot}, Sb = bexp{is-r
+ cot}, we find a Hopf bifurcation along the following curve:

Pearson(17) has mapped the types of patterns which form at given
parameter values. He discovered several regions of striped behavior, several
with hexagonal structure, and some turbulent regions. Our methods for
producing these patterns were taken from his paper with developmental
help from Valerie Petrov at the University of Texas at Austin.

5.2. Initial Setup



by studying the final state of patterns evolved by Pearson's method. Upon
examination, final values of a range approximately from 0.3 to 0.8, while
final values for b typically range from 0 to 0.3. With this in mind, we limit
our initial conditions to lie within these ranges. To further control our
seeding process, the initial value at any point is the average of previously-
seeded nearest neighbors plus some random noise. This reduces local ran-
domness and stresses continuity of values between points, thereby reducing
the initial strength of the diffusion term. The first point (top left corner) is
seeded at (0.5, 0.25). Noise levels set are at 50%.

For all realizations, data is recorded at f = 125, 250, 500, 1000, 2000,
4000, 8000, 16000, and 32000 time steps. We used the Bulirsch-Stoer
method,(18) with each time step equal to 1 second. After 32000 time steps,
the time between recorded data sets gets prohibitively long, whereas the
patterns do not change noticeably over this time scale. The simulation was
run on a DEC Alpha at 200 MHz with a grid size of 256 x 256.

5.3. Evolution of the Disorder Parameter

Figures 3a and 3b show two realizations of the Gray-Scott model at
the parameter values A: = 0.06 and F= 0.042. Since these external param-
eters are the same for each, the resulting patterns share common features.
Differences in the initial conditions of each realization cause each pattern
inevitably to be unique. Despite these initial conditions and the differences
between the details of the patterns at any given moment, the patterns
evolve in a similar fashion and at the same rate. In both cases, the complete
pattern is apparent in its entire form only at t = 1000 seconds. Before this,
the stripes do not occupy the entire space. After 1000 seconds, the patterns
change very little but their features sharpen.

For our experiment, we ran the Gray-Scott model at several param-
eter values. Figure 4 shows a close-up of the parameter space The solid
curve separates the real and imaginary solutions and the dotted curve
represents the point of the Hopf bifurcation. At each designated point in
parameter space, we ran four realizations under different initial conditions.
Then we calculated the disorder parameter at each of the recorded time
steps in each realization. We plotted the disorder parameter vs. time for
each realization at the designated values of F and k, and calculated the
slopes by visually determining the average values of the disorder parameter.

The results are best viewed when plotted as 6 vs. log(t) as shown in
Fig. 5. The close agreement between the curves of each graph indicates that
S is indeed independent of the individual configurations (i.e., initial condi-
tions) of the pattern at all times. This result is in good agreement with the
patterns of Fig. 3, which are very similar, despite being unique.
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Fig. 3. The generation of labyrinthine patterns from random initial states. The details of
snapshots from the two runs shown are different at each stage. However, the presence of com-
mon characteristics at each stage of the evolution is easily observed.
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Fig. 3. {Continued)
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Fig. 4. Closeup of the parameter space of the Gray-Scott model with representative points
labeled (see Table I).

The differences in the shapes of the decay curves between graphs
indicates that S depends on the external parameters of the experiments.
This is again in good agreement with the patterns which from at each new
set of parameters. Changing these parameters changes crucial charac-
teristics such as the density of point defects and the severity of domain
walls. These new features are reflected in the decay rate of the disorder
parameter.

Table I. The Two Distinct Slopes of the Curve log(f) vs. 6(f ) for
Several Parameter Values of The Gray-Scott Model"

Letter

A
B
C
D
E
F
G
H

K

0.06
0.06
0.06
0.061
0.062
0.062
0.063
0.063

F

0.042
0.044
0.046
0.046
0.044
0.048
0.052
0.06

slope 1

-0.0719
-0.1019
-0.0481
-0.0491
-0.0915
-0.0322
-0.0347
-0.0451

slope2

-0.0063
-0.0042
-0.0084
- 0.0086
-0.0049
-0.0071
-0.0048
-0.0100

"The points A, B, etc. are those shown in Fig. 4. "slopel" refers to the initial value of the
slope and "slope2" refers to the value after transition.
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Fig. 5. The behavior of <5 as a function of (the logarithm of) time for multiple runs at several
values of the control parameters. For given control parameters, the curves S(t) are configura-
tion independent. Furthermore, the time evolution of the disorder parameter consists of two
phases, each with logarithmic decay of 3. The decay rates are parameter dependent.

The disorder parameter shows that the Gray-Scott model decays to an
ordered state. Each curve displays two distinguishable rates of decay. The
first rate is due to the relaxation of the data out of the initial disordered
state. Once the pattern has formed, it relaxes into a final state, causing the
slower rate found at the later times. The values of these slopes are dis-
played against the parameters F and k in Table I.

5.4. Behavior of 6[t)



For early time steps, (~100 seconds) poor values of k0 can cause
bizarre behavior of the disorder parameter, as in graphs for k = 0.06,
F= 0.042 and k = 0.06, F= 0.044. Once the fundamental frequency is well
established, a better reading of the disorder parameter is possible. The
character of the decay in the disorder parameter is tied to the external
parameters (seen in the shapes of the curves of Fig. 5) rather than to the
specific initial conditions (note the semblance among curves at the same
external parameters). We therefore see a universal property of the decay
rate in the Gray-Scott model equations.
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6. CONCLUSIONS

The form of the disorder parameter 3 was derived by imposing its
equivariance under all rigid motions of a single pattern. Rather sur-
prisingly, it was found that 5 is the same for multiple configurations
generated under identical external conditions; i.e., it is a configuration inde-
pendent characterization of labyrinthine patterns. In addition, analysis of
patterns generated in experiments and model systems show that 6 is an
extensive variable. The corresponding intensive variable S = S/(Area) can e
used to compare and contrast distinct patterns. In particular S can be used
to contrast patterns with visually different characteristics.(9)

Patterns generated in experiments (e.g., Faraday experiment in a
granular layer(12)) show the organization (in time) of an initially random
state to the final labyrinthine structure. We have analyzed similar behavior
in patterns generated in a model system, and have shown that the disorder
parameter captures configuration independent properties of the relaxation.
The evolution of initially random states exhibits two distinct phases, each
accompanied by a logarithmic decay of 5. (This behavior is reminiscent of
the relaxation in the decay of the Flux Creep in "hard" superconduc-
tors.(13, 14))) During the first phase the random initial state develops into small
independent striped domains. During the second phase, the domains com-
pete with each other for dominance. The presence of two distinct phases of
the evolution (with a sharp transition) is clearly seen in the behavior of S(t).

Analysis of experimental patterns has one additional complication.
These structures (unlike patterns generated in model systems) do not have
periodic boundary conditions. The spectral methods used to evaluate 5
(Section 4) can be applied to data that are modified by tapering the
original data near the boundaries (e.g., with Gaussian functions) so that
the field vanishes at the boundaries. The modified fields are periodic, and
methods discussed in Section 4 can be implemented. Preliminary analysis
of experimental patterns demonstrate behavior in S(t) that is similar to the
results discussed in Section 5.
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